PORTLAND-MILWAUKIE LIGHT RAIL PROJECT

Noise and vibration
Final Environmental Impact Statement

Dave Unsworth, pinch hitting for Jamie Snook

Citizens Advisory Committee
May 20, 2010
Topics we will cover

• FTA assessment of noise and vibration
• Impacts and general mitigation strategies for the Portland-Milwaukie Light Rail Project

This information is draft and subject to change, pending publication of the Final EIS.
Light rail at 50 mph

<table>
<thead>
<tr>
<th>Noise Source or Activity</th>
<th>Sound Level (dBA)</th>
<th>Subjective Impression</th>
<th>Relative Loudness (human judgment of different sound levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet aircraft takeoff from carrier (50 feet)</td>
<td>140</td>
<td>Threshold of pain</td>
<td>64 times as loud</td>
</tr>
<tr>
<td>50 horse power siren (100 feet)</td>
<td>130</td>
<td></td>
<td>32 times as loud</td>
</tr>
<tr>
<td>Loud rock concert near stage, Jet takeoff (200 feet)</td>
<td>120</td>
<td>Uncomfortably loud</td>
<td>16 times as loud</td>
</tr>
<tr>
<td>Float plane takeoff (100 feet)</td>
<td>110</td>
<td></td>
<td>8 times as loud</td>
</tr>
<tr>
<td>Jet takeoff (2,000 feet)</td>
<td>100</td>
<td>Very loud</td>
<td>4 times as loud</td>
</tr>
<tr>
<td>Heavy truck or motorcycle (25 feet)</td>
<td>90</td>
<td></td>
<td>2 times as loud</td>
</tr>
<tr>
<td>Garbage disposal (2 feet)</td>
<td>80</td>
<td>Moderately loud</td>
<td>Reference loudness</td>
</tr>
<tr>
<td>Typical at-grade light rail vehicle</td>
<td>70</td>
<td></td>
<td>⅓ as loud</td>
</tr>
<tr>
<td>Moderately busy department store</td>
<td>60</td>
<td></td>
<td>1/4 as loud</td>
</tr>
<tr>
<td>Typical television show (10 feet)</td>
<td>50</td>
<td></td>
<td>1/8 as loud</td>
</tr>
<tr>
<td>Typical quiet office environment</td>
<td>40</td>
<td>Quiet</td>
<td>1/16 as loud</td>
</tr>
<tr>
<td>Bedroom or quiet living room</td>
<td>30</td>
<td>Very quiet</td>
<td>1/32 as loud</td>
</tr>
<tr>
<td>Quiet library, soft whisper (15 feet)</td>
<td>20</td>
<td>Just audible</td>
<td>1/64 as loud</td>
</tr>
<tr>
<td>High quality recording studio</td>
<td>10</td>
<td></td>
<td>1/128 as loud</td>
</tr>
<tr>
<td>Acoustic Test Chamber</td>
<td>0</td>
<td>Threshold of hearing</td>
<td></td>
</tr>
</tbody>
</table>

Sources: Beranek (1988) and MM&A measured data from multiple projects

This information is draft and subject to change, pending publication of the Final EIS.
Quiet zone

• Implement safety measures to reduce risk associated with no horn
• Applies to light rail and freight rail vehicles
• Horns will still sound under dangerous conditions
• Bells with gates

This information is draft and subject to change, pending publication of the Final EIS.
What is a noise impact?

This information is draft and subject to change, pending publication of the Final EIS.
Noise and vibration impacts without/with mitigation

<table>
<thead>
<tr>
<th></th>
<th>Light Rail Noise Impacts</th>
<th>Traffic Noise Impacts</th>
<th>Vibration Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate</td>
<td>Severe</td>
<td></td>
</tr>
<tr>
<td>LPA without mitigation</td>
<td>29</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>LPA with mitigation</td>
<td>9 (Exterior)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This information is draft and subject to change, pending publication of the Final EIS.
Outreach

• All impacted parties have been met with or offered meeting prior to publication of the Final EIS

This information is draft and subject to change, pending publication of the Final EIS.
Assessing noise impacts

1. Assess existing noise levels
2. Determine project-generated noise
3. Determine sensitivity of surrounding uses

This information is draft and subject to change, pending publication of the Final EIS.
Noise mitigation strategies

• Sound barriers
• Track lubrication at curves
• Building sound insulation
• Adjustable crossing bells
• Directional bells and bell shrouds

This information is draft and subject to change, pending publication of the Final EIS.
Vibration

• Caused by wheel rail interface
• Light rail vibration is always much lower than a freight train
• Testing performed to determine how vibration travels through local soils

This information is draft and subject to change, pending publication of the Final EIS.
Assessing vibration impacts

1. Weight dropped to determine how vibration waves move through soils
2. Compare to MAX based train speed and distance to buildings
3. Compare to FTA thresholds

This information is draft and subject to change, pending publication of the Final EIS.
Vibration mitigation strategies

• Ballast mats
• Resilient fasteners
• Tire derived aggregate
• Ballast track instead of paved track
• Special trackwork at crossovers and turnouts
• Rail grinding/wheel truing

This information is draft and subject to change, pending publication of the Final EIS.
Legend
- Vibration Impacts with Mitigation
- Park and Ride
- Light Rail