Bridge Type – Status Update

Bicycle – Pedestrian Path Width
Bridge Type – Status Update
WRBAC Recommendation:

- Advance Cable Stayed bridge type into preliminary engineering
- Work to combine best features of each to provide options
PE Work on Cable Stayed Type

- Work to combine best features of each to provide options
PE Work on Cable Stayed Type

Willamette River Transit Bridge

Cable Stay - 4 Pier Modified

4 – Pier Attributes
- Piers in deeper water
- Shorter span – more cost effective

2 – Pier Attributes
- Cables between transit way and bicycle – pedestrians

Hybrid Attributes
- Match tower height of Hybrid at 180’ versus 254’ for CS4
PE Work on Cable Stayed Type

Willamette River Transit Bridge

Cable Stay - 4 Pier Modified
PE Work on Cable Stayed Type

Willamette River Transit Bridge

Cable Stay - 4 Pier Modified
PE Work on Cable Stayed Type

Willamette River Transit Bridge

Cable Stay - 4 Pier Modified
PE Work on Cable Stayed Type

Team Working on Cost Estimate
Estimates due next week

Willamette River Transit Bridge

Cost TBD

Cable Stay - Self Anchored Suspension

Cost TBD

Cable Stay - 4 Pier Modified
Bridge Type – Status Update

Bicycle – Pedestrian Path Width
Pedestrian Sidewalk Through Zone

- **Pedestrian Districts with 80’ ROW** 8.0’
- **City Walkways and Local Streets in Ped Districts** 6.0’
- **Local Service Walkways** ... 5.0’
Bicycle – Pedestrian Path Width

Bicycle Lanes (Curbed Streets)

- A curbed street provides opportunities for passing
Bicycle – Pedestrian Path Width

City Standards

Bicycle Lanes (Curbed Streets)

- **Minimum** ... 4.5’
- **Preferred** ... 5.0’
- **Maximum** (high volumes and/or steep grades) 6.0’
Bicycle – Pedestrian Path Width

Willamette River Transit Bridge

Current Design

Dedicated Facilities

• Bicycle lane 6.0’
• Pedestrian through zone 6.0’
• Potential opportunities for sharing
Bicycle – Pedestrian Path Width

Demand Analysis

Willamette River Transit Bridge
Bicycle – Pedestrian Path Width

Demand Analysis

Table 1. Mode Split Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Trips ≤3.5 mi.</th>
<th>Trips >3.5 mi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower-bound</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Mid-range</td>
<td>16%</td>
<td>8%</td>
</tr>
<tr>
<td>Upper-bound</td>
<td>30%</td>
<td>14%</td>
</tr>
<tr>
<td>Walk</td>
<td>4%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Year 2030 Bike/Walk Trips on Proposed Bridge

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>East-bound</td>
</tr>
<tr>
<td>Lower bound</td>
<td>5,935</td>
<td>327</td>
</tr>
<tr>
<td>Mid-range</td>
<td>8,328</td>
<td>458</td>
</tr>
<tr>
<td>Upper bound</td>
<td>15,173</td>
<td>834</td>
</tr>
<tr>
<td>Walk</td>
<td>2,968</td>
<td>163</td>
</tr>
</tbody>
</table>
Bicycle – Pedestrian Path Width

Demand Analysis

Table 1. Mode Split Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Trips ≤3.5 mi.</th>
<th>Trips >3.5 mi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower-bound</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Mid-range</td>
<td>16%</td>
<td>8%</td>
</tr>
<tr>
<td>Upper-bound</td>
<td>30%</td>
<td>14%</td>
</tr>
<tr>
<td>Walk</td>
<td>4%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Year 2030 Bike/Walk Trips on Proposed Bridge

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East-bound</td>
<td>West-bound</td>
</tr>
<tr>
<td>Lower bound</td>
<td>5,935</td>
<td>327</td>
</tr>
<tr>
<td>Mid-range</td>
<td>8,328</td>
<td>458</td>
</tr>
<tr>
<td>Upper bound</td>
<td>15,173</td>
<td>834</td>
</tr>
<tr>
<td>Walk</td>
<td>2,968</td>
<td>163</td>
</tr>
</tbody>
</table>

Hawthorne Bridge currently at 8,000 daily

Willamette River Transit Bridge
Bicycle – Pedestrian Path Width

Demand Analysis - Findings

- Downhill operation not an issue
- Uphill traffic with varying climbing speeds create **conflict events**
- Opportunities to provide designated **passing areas needed**
Bicycle – Pedestrian Path Width

Demand Analysis - Findings

• Downhill operation not an issue
• Uphill traffic with varying climbing speeds create conflict events
• Opportunities to provide designated passing areas needed
• Opportunities exist to vary space allocation
Bicycle – Pedestrian Path Width

Path Width

- How wide can width be pushed without change in structure type
- Path width can be increased to 14’
- 14’ path width within acceptable range from city
- Provides for riding side-by-side or passing

7’ Bicycle lane
1’ Shy
6’ Pedestrian
Bicycle – Pedestrian Path Width

Path Width

- How wide can width be pushed without change in structure type
- Path width can be increased to 14’
- 14’ path width within acceptable range from city
- Provides for riding side-by-side or passing

Updated Estimate
$3.255 M
Questions?

Cable Stay - Self Anchored Suspension

Cable Stay - 4 Pier Modified
Next Steps

- May 28, 2009: WRBAC Meeting
- Mid June 2009: Open House & Report to City Council
- June 18, 2009: CAC Presentation
- June 22, 2009: Steering Committee Meeting
Thank you

For more information, visit:
trimet.org/pm